Multi-Component Reactive Membranes: A Computer Simulation Study

Olga Kuksenok
Anna C. Balazs

Chemical Engineering Department
University of Pittsburgh
Pittsburgh, PA
Introduction

- **Inspiration:** non-equilibrium dynamical behavior of bio-membranes
 - Diverse reactivity
 - Perform biological functions (signaling, molecular recognition, transport)

- **Goal:** design synthetic responsive surfaces
 - Dynamically controlled composition & topology
 - Reactive three component membrane
 - Exhibit rich dynamical behavior
 - Perform “gradient sensing”

Membrane protein: reaction in lipid bilayers
http://www.pnas.org/misc/Archive022304.shtml
PNAS News Archive (2004)
Model: Reactive Membrane

- **Three components (A,B,C)**
 - Local composition \(\varphi(x, y) = \rho_A - \rho_B, \quad \psi(x, y) = \rho_C; \sum \rho_i = 1. \)

- **Surface height** \(h(x, y) \)
 - Measured with respect to flat surface

- **Free energy:** \(F(\varphi, \psi, h) = \frac{1}{V} \int d\mathbf{r} \left[f_0(\varphi, \psi) + f_1(\varphi, h) \right] \)

Phase separation between A,B and C

\[
\begin{aligned}
 f_{\text{local}}(\varphi, \psi) + \frac{\gamma_\varphi}{2} (\nabla \varphi)^2 + \frac{\gamma_\psi}{2} (\nabla \psi)^2 \\
\frac{\sigma}{2} (\nabla h)^2 + \frac{\kappa}{2} \left(\nabla^2 h - H_{eq}(\varphi) \right)^2
\end{aligned}
\]

- \(\kappa \) is bending rigidity, \(\sigma \) is lateral surface tension
- \(H_{eq}(\varphi) = \varphi H_0 \) is spontaneous curvature
- In equilibrium, A & B will take their spontaneous curvatures
Model: Evolution Equations

- Externally controlled reaction between A and B
 - Affects composition and shape of AB

 As introduced in: R.Reigada, J.Buceta, K.Lindenberg, PRE 72, 051921 (2005)

- Evolution equations

\[
\frac{\partial \phi}{\partial t} = M_\phi \nabla^2 \frac{\delta F}{\delta \phi} - \Gamma \phi
\]

- Evolution of AB composition

\[
\frac{\partial \psi}{\partial t} = M_\psi \nabla^2 \frac{\delta F}{\delta \psi}
\]

- Evolution of C

\[
\frac{\partial h}{\partial t} = -M_h \frac{\delta F}{\delta h} + \Gamma \phi \xi
\]

- Evolution of height

- \(M_i \) is mobility of i-th order parameter; \(\Gamma_+ \equiv \Gamma_- \equiv \frac{1}{2} \Gamma \)

- Reactive term \(\Gamma \phi \xi \) was introduced by R.Reigada et. al., PRE (2005)

- \(\xi \) is strength of effect of reaction on shape
Linear Stability Analysis in Binary Case

- **Evolution of AB mixture:**
 \[
 \frac{\partial \varphi}{\partial t} = M_\varphi \nabla^2 \left[\frac{\partial f_{\text{local}}(\varphi, \psi)}{\partial \varphi} - \gamma_\varphi \nabla^2 \varphi + \kappa H_0^2 \varphi - \kappa H_0 \nabla^2 h \right] - \Gamma \varphi
 \]
 \[
 \frac{\partial h}{\partial t} = M_h \nabla^2 \left[\sigma h + \kappa \varphi H_0 - \kappa \nabla^2 h \right] + \Gamma \varphi \xi
 \]

- **Uniform state (fixed point)** \(\varphi_0 = 0, h_0 = 0 \).

- **Characteristic equation:** \(\det\left| L_{ij} - w(q) \delta_{ij} \right| = 0; \)
 \[
 L = \begin{vmatrix}
 M_\varphi \left[-\gamma_\varphi q^4 + q^2 (2a_{20} - \kappa H_0^2) \right] - \Gamma & -M_\varphi q^4 \kappa H_0 \\
 -M_h \kappa H_0 q^2 + \Gamma \xi & -M_h \left[\kappa q^4 + \sigma q^2 \right]
 \end{vmatrix}
 \]

- **Growth rate of \(q \) mode of fluctuation** \(w(q) = \frac{1}{2} \left[\text{Tr}[L] \pm \sqrt{\text{Tr}[L]^2 - 4 \text{det}[L]} \right] \)
Linear Stability Analysis in Binary Case: Possible Scenarios

- Uniform state is stable
 - \(\text{Re}[w(q)] < 0 \) at any \(q \)

- Turing-like pattern
 - \(\text{Re}[w(q)] > 0 \) & \(\text{Im}[w(q)] = 0 \) at \(q \neq 0 \)

- Traveling waves
 - \(\text{Re}[w(q)] > 0 \) & \(\text{Im}[w(q)] \neq 0 \) at \(q \neq 0 \)

- Turing-like patterns and waves
 - Both regions are present at different \(q \)
Critical Condition on Systems Parameters

- **Uniform state is stable if**
 \[
 \Gamma \geq \Gamma_1^{\text{crit}} \equiv \frac{M_\phi}{4} \left(-2a_{20} + H_0^2 \kappa + \frac{M_H}{M_\phi} \sigma \right)^2
 \]
 - Increase in spontaneous curvature, \(H_0 \), increases \(\Gamma_1^{\text{crit}} \).
 - Increase in film’s interfacial tension, \(\sigma \), increases \(\Gamma_1^{\text{crit}} \).
 - Increase in AB interfacial tension, \(\gamma_\phi \), decreases \(\Gamma_1^{\text{crit}} \).

- **Turing-like patterns if**
 \(\Gamma_2^{\text{crit}} \leq \Gamma < \Gamma_1^{\text{crit}} \).
 - Increase in \(H_0 \) or \(\xi \) decreases \(\Gamma_2^{\text{crit}} \).
Late Time Morphology in AB Blends: Possible Scenarios

- **Uniform mixed state**
 \[\varphi(x, y) \]

- **Turing patterns**
 \[\varphi(x, y) \]

- Uniform state is stable at high \(\Gamma \)

- Patterns are stationary with characteristic domain size & height
Traveling Waves: Scenario 1

Early times:
\[\xi = 6; \Gamma = 0.126 \]
\[\varphi(x, y) \]
\[h(x, y) \]

Late times:
\[\varphi(x, y) \]
\[h(x, y) \]
Traveling Waves: Scenario 2

- Observed close to bifurcation point; \(\phi(x, y) \ll 1 \ (\xi = 8; \Gamma = 0.143) \)

\(\phi(x, y) \quad \text{\&} \quad h(x, y) \)

- Depends on initial random seed:
Late Time Morphology in AB Blends: Traveling Waves

Case 1:

\[\xi = 5.5; \Gamma = 0.13 \]

\[\varphi(x, y) \]

\[h(x, y) \]

- Observed only if \(\xi \neq 0 \)

Case 2:

\[\xi = 8; \Gamma = 0.143 \]

\[\varphi(x, y) \]

\[h(x, y) \]

- Observed close to bifurcation point; requires \(\varphi(x, y) \ll 1 \)
Interacting Wave and Turing Patterns:
A Memory of Initial Fluctuation

- Large initial fluctuation in φ
 $\xi = 4.8; \Gamma = 0.13$
 $\varphi(x, y)$
 $h(x, y)$
 Dynamic structure

- Small initial fluctuation in φ
 $\xi = 4.8; \Gamma = 0.13$
 $\varphi(x, y)$
 $h(x, y)$
 Stationary structure
Behavior strongly depends on surface tension
- Increasing bending elasticity κ decreases σ^{crit}

Traveling waves occur in flexible (low κ) reactive membrane, if:
- Lateral surface tension is low: $\sigma \leq \sigma^{\text{crit}}$
- Strong coupling between reaction and change in height: $\xi \geq \xi^{\text{crit}}
A, B and C phase separate & local height depends on composition

Morphology and topology within AB domain as in binary case, but:

AB lamellae orient perpendicularly to C domains
Evolution in Ternary Membranes: Waves

- A, B and C phase separate; traveling waves within AB domains
 - Intermediate times
 - Late times
 - Waves confined between C domains
 - Prevents appearance of coherent traveling pattern (as in AB case)

- Non-reactive C component strongly affects membrane’s behavior
 - Rich dynamic behavior & opportunities for dynamic control
Evolution of Ternary Membrane in Gradient Fields

- Externally controlled reaction rate coefficient:
 \[\Gamma(x) \]

- AB lamellae width and membrane height decrease with increase in \(\Gamma \)
- C component diffuses to high \(\Gamma \): controlled transport along membrane

- “Gradient sensing”: Patterns critically depend on external gradient

\[\xi = 0 \]

\[\xi = 5 \]
Conclusions

- Developed model for three-component reactive flexible membrane
 - Externally controlled reaction (light, chemical flux)
 - Composition & topology can be altered dynamically
 - Non-reactive C component strongly affects membrane’s dynamics
 - Rich dynamical behavior
 - Perform gradient sensing