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Introduction

Inspiration: non-equilibrium dynamical behavior

of bio-membranes

Diverse reactivity

Perform biological functions

(signaling, molecular recognition, transport) 

Goal: design synthetic responsive surfaces
Dynamically controlled composition & topology

Reactive three component membrane
– Exhibit rich dynamical behavior 
– Perform “gradient sensing”

Membrane protein: reaction 
in lipid bilayers
http://www.pnas.org/misc/
Archive022304.shtml
PNAS News Archive (2004)



Model : Reactive Membrane

Three components (A,B,C)
Local composition

Surface height 

Measured with respect to flat surface

Free energy:

is bending rigidity,         is lateral surface tension
is spontaneous curvature

In equilibrium, A & B will take their spontaneous curvatures
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Model: Evolution Equations

Externally controlled reaction between A and B 
Affects composition and shape of AB

As introduced in: R.Reigada, J.Buceta, 
K.Lindenberg,PRE 72, 051921 (2005)

Evolution equations

is mobility of i-th order parameter;
Reactive term              was introduced by R.Reigada et. al., PRE (2005)

is strength of effect of reaction on shapeξ
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Linear Stability Analysis in Binary Case

Evolution of AB 
mixture:

Uniform state (fixed point)

Characteristic equation:  

Growth rate of  q mode of fluctuation 
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Linear Stability Analysis in Binary Case: Possible Scenarios

Uniform state is stable
at any q.

Turing-like pattern
& 
at                             

Traveling waves
& 
at 

Turing-like patterns 
and waves

Both regions are 
present at different q.
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Critical Condition on Systems Parameters

Uniform state is stable if 

Increase in spontaneous curvature,        , increases 
Increase in film’s interfacial tension,        , increases 
Increase in AB interfacial tension,          , decreases  

Turing-like patterns if

Increase in        or             
decreases                      
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Late Time Morphology in AB Blends: Possible Scenarios
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Patterns are stationary with 
characteristic domain size & height

Turing
patterns

Uniform state is stable 
at high       Γ

Uniform 
mixed state
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Traveling Waves: Scenario 1

Early times:
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Late times:



Traveling Waves: Scenario 2

Depends on initial random seed:

Observed close to bifurcation point; 1),( <<yxϕ
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Late Time Morphology in AB Blends: Traveling Waves

Observed close to bifurcation 
point; requires  

Case 2:

Observed only if

Case 1:
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Interacting Wave and Turing Patterns: 
A Memory of Initial Fluctuation

Dynamic structure 

Small initial fluctuation in 
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Behavior strongly depends on surface tension
Increasing  bending elasticity          decreases 

Phase Diagram in ),( σΓ

Uniform state

Traveling wave
Turing pattern

κ critσ

Traveling waves occur in flexible (low      ) reactive membrane, if: 
Lateral surface tension is low:
Strong coupling between reaction and change in height:    
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Evolution in Ternary Membranes

A, B and C phase separate & local height depends on composition
Morphology and topology within AB domain as in binary case, but:

AB lamellae orient perpendicularly to C domains  
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Evolution in Ternary Membranes: Waves

A, B and C phase separate; traveling waves within AB domains

Waves confined between C domains

Prevents appearance of coherent traveling pattern (as in AB case)

“Corona” forms along C boundary, which “meets” a wave front
Traveling defects appear “after” the C domain

Intermediate times Late times

Non-reactive C component strongly affects membrane’s behavior 
Rich dynamic behavior & opportunities for dynamic control



Externally controlled reaction rate coefficient:

AB lamellae width and membrane height decrease with increase in 
C component diffuses to high      : controlled transport  along membrane

“Gradient sensing”: Patterns critically depend on external gradient
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Evolution of Ternary Membrane in Gradient Fields
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Conclusions

Developed model for three-component 
reactive flexible membrane

Externally controlled reaction 
(light, chemical flux)

Composition & topology 
can be altered dynamically

Non-reactive C component 
strongly affects membrane’s 
dynamics 

Rich dynamical behavior
Perform gradient sensing


