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We analyze the director field around a spherical colloid particle with radial~homeotropic! anchoring on its
surface. Depending on the relative strength of anchoringW, controlled by the parameterWR/K with K the
Frank constant andR the particle radius, the director distribution may possess a singular ring of a21/2
disclination in the equatorial plane. The equilibrium radius of this ring, at rigid radial anchoring, is
a*'1.25R and only weakly depends on the disclination core energy. At small anchoring the director field is
regular and weakly disturbed by the particle, there is a characteristic crossoverW* between the two regimes.
We obtain the analytical expression forn~ r !, which decays asr23sin2u away from the particle, and compare
it with the exact numerical solution in the highly distorted nonlinear regime.@S1063-651X~96!04511-4#

PACS number~s!: 61.30.Gd, 64.60.Cn, 64.70.Md

I. INTRODUCTION

Colloid systems attract a wide interest of academic and
industrial researchers, in part due to a number of their im-
portant practical applications and also because the fluid dy-
namics processes, ordering and stability, of these systems
present challenging and complex problems. The physics and
chemistry of colloids and heterogeneous emulsions are rap-
idly becoming, from an empirical domain of paint and food
industry, an exciting area of fundamental research@1,2#. Col-
loids are characteristically mesoscopic systems with structure
and time scales such that typical shear rates can bring them
out of equilibrium and into some exotic states. Of much in-
terest are various interactions, occurring in colloids, for in-
stance, and hydrodynamic and polymeric solvent-mediated
forces.

Colloid suspensions in a liquid-crystal matrix have a cru-
cial addition to their properties, which is the long-range de-
formation field created by particles in the liquid crystal due
to the director anchoring on the particle surface. The analysis
of this problem is difficult from both experimental and theo-
retical points of view. Experimentally, it is hard to visualize
the director distribution in a thick sample of liquid crystal
@3#. Perhaps the quenching and fracturing technique@4# is a
more appropriate tool; otherwise one is forced to examine
the secondary effects, such as the aggregation time or the
anisotropy of the particle distribution. All such effects re-
quire a detailed knowledge of the director distribution
around a colloid particle suspended in a liquid-crystal matrix.
A full theoretical analysis of this problem is virtually impos-
sible because of highly nonlinear problems in a complex
geometry. A trial functionn~r !, based on the direct superpo-
sition of component deformations, has been exploited in Ref.
@5#. It has been assumed that due to the rigid anchoring, the
particle generates a director field of a radial hedgehog, to
which one has to add a deformation of a (21/2) disclination
ring to preserve the topological neutrality of the whole con-
struction. As a result, a plausible director distribution~an-
satz! can be constructed~see Fig. 1! with the director devia-
tion angle given by

ba~r !5arctan
r

z
2
1

2
arctan

r2a

z
2
1

2
arctan

r1a

z

5u2
1

2
arctan

sin2u

~a/r !21cos2u
, ~1!

where the first line is written in cylindrical coordinates
$r,f,z% and explicitly shows the component defect expres-
sions~with a the radius of disclination ring!. The second line
is obtained by transformation to spherical coordinates
$r ,u,f%. Such an ansatz reflects the characteristic quadrupo-
lar symmetry of the problem and the presence of a singular
ring, but otherwise it is quite a poor approximation. It is easy
to see that this trial distributionn~r ! has its deformations
decaydn;(r /a)22 far away from the particle.

We shall argue below that the trial function~1! is quali-
tatively incorrect, and this article is devoted to obtaining a
proper solution of the problem of a director distribution in a
nematic liquid crystal around a spherical particle with radial
~homeotropic! anchoring on the surface. We obtain this so-
lution for different values of the nematic anchoring energy
W and show that the characteristic (21/2) disclination ring
disappears at a criticalW* , below which the director field is

FIG. 1. ~a! Particle ~of radiusR) with rigid radial boundary
conditions and a disclination ring of radiusa in the plane perpen-
dicular to n0. ~b! The particle with weak radial anchoring on the
surface has a regular director distribution, which may be treated as
an ‘‘image’’ disclination ring witha!R.
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regular; in all cases the long-range asymptotic behavior of
distortions is, in fact,dn;r23 ~Fig. 1!.

The problem of director distribution and possible singu-
larities in a heterogeneous liquid crystal has a more general
relevance. The nematic liquid crystal, as any other vector-
field system, is uniform in its ground state. However, in con-
strained geometries the structure with topological defects can
be the ground state, and properties of such a state can be
distinctly different from those of the uniform one. Con-
straints are most commonly imposed by the system bound-
ary, which in this particular case is the particle surface~an
‘‘inner boundary’’!. An immediate consequence of having
inner boundaries in the system, including the possible discli-
nation core surface, is that one has to be careful with surface
terms in the Frank free-energy density. Normally, in the one-
constant approximation one writes for it12K(¹n)

2, which is
obtained from the general expression@6# by an integration by
parts and dropping the surface contributions. Now we have
to use the expression

F5E 1

2
K@~divn!21~curln!2#d3r , ~2!

which cannot be reduced any further. Strictly speaking, one
also needs to add the two independent divergent elastic
terms, which also have a contribution on the inner surfaces,

K13¹~n divn!2K24“~n divn1@n3curln# !. ~3!

The effect of these terms has been extensively discussed in
the recent literature@7#. This paper is aimed at obtaining the
compact analytical solution forn~r ! around the colloid par-
ticle. Therefore we will have to omit these terms, hoping that
their effect will not change the conclusions in a qualitative
way.

Finally, we define the anchoring energyW in the Rapini
approximation@8#

Fs52 R 1

2
W~n•n̂!2dS, ~4!

with n̂ the unit vector normal to the particle surface. At rigid
anchoringW→`, the director will point radially at all points
on this surface, thus forcing the system to respond to the
topological mismatch by forming a disclination ring of op-
posite effective point charge. At moderate anchoring energy
one should expect only small deviations of the director from
its uniform undistorted orientationn0.

II. WEAK ANCHORING: A LINEARIZED SOLUTION

The task of finding a director distribution around our
spherical particle consists of minimization of the Frank free-
energy functional with boundary conditions, provided by it
and the surface energy~4!. Generally this class of problems
is not solvable analytically because of its nonlinearity,
brought in by the unit-vector constraintun(r )u251. How-
ever, in the case of weak anchoring we expect only small
deviations of the director and the problem can be linearized.

In the given geometry~Fig. 1! it is convenient to describe
the director field by two principal angles of the spherical
coordinate system nz5cosb(r ),nx5sinb(r )cosf, and

ny5sinb(r )sinf, wheref is the azimuthal angle, thus re-
specting an obvious azimuthal symmetry of the problem. The
differential equation for the Frank free-energy minimum in
the one-constant approximation takes the form

¹2b2
sin2b
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50, ~5!

with u the polar angle of the spherical coordinate system,
and the boundary condition on the particle surfacer5R,
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Assuming that, at small anchoring, the director deviates
from its uniform orientationn0uuẑ by only a small amount
b(r )!1, these equations transform into a linear problem:
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The general solution of Eq.~7!, decaying at infinity, is

b5(
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1~cosu!, ~8!

where P k
1 is the associated Legendre polynomial. The

boundary condition on the particle surface selects a particular
modek52 with all other coefficientsCkÞ250. The director
rotation angle takes the form

b5
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4K SRr D
3
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Obviously, the approximation leading to this expression
b!1 is satisfied whenWR/K!4. The convention of ‘‘weak
anchoring’’ usually corresponds to values
W<1024 ergs/cm2. Taking the typical value for Frank elas-
tic constantsK;1026 ergs/cm, this approximation is valid
for particle sizesR!0.5 mm. Even for the conventionally
‘‘strong anchoring’’ W>1022 ergs/cm2, colloid particles
smaller thanR;526 mm will satisfy the linearization ap-
proximation and the director field around them will be fully
described by Eq.~9!.

The decay rate of director deformations far away from the
particleb;r23 is the consequence of the basic symmetry of
this problem: the localized object with the origin of the
spherical coordinate system in its center, floating in an oth-
erwise uniform nematic, which provides the azimuthal~cy-
lindrical! symmetry forn~r !. There is a qualitative difference
between the correct equation~9! and the trial function~1!,
which has the asymptotic behaviorb' 1

2(a/r )
2sin2u at

r@a.
As a conclusion of this section, we maintain that in the

regime of small distortions, which holds for weak anchoring
on the particle surface, or at large distance from any particle
where the memory of large director variations and singu-
larities is lost, the director angleb(r ) is described by
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the quadrupolar symmetry and cubic-power decay
b→const(R/r )3sin2u. Let us note in passing that the same
asymptotic behavior will be valid for the case of particles
with planar anchoring, which corresponds to theW sign re-
versal in Eqs.~4!, ~6!, and ~9!, but preserves the basic qua-
drupolar symmetry responsible for this type of behavior.

III. STRONG ANCHORING: A DISCLINATION RING

The opposite limiting case to the one considered in the
preceding section is the regime of rigid radial anchoring on
the particle surface. Now one cannot assume thatb!1 in the
vicinity of the particle and there is no straightforward way to
obtain the solution. An appealing possibility is to attempt to
interpolate the far-field behavior~9!: by comparison with Eq.
~1! we can now write a new trial function

ba5u2
1

2
arctan

sin2u

~a/r !31cos2u
. ~10!

Such a distribution gives the correct asymptotic behavior
b;r23sin2u as well as the ring of (21/2) singularity at

r5a, u5p/2, which is a great advantage. However, the
boundary condition on the particle surfacer5R is not re-
spected by thisba(r ).

Below we investigate the degree of accuracy of this trial
function. First of all we obtain an exact numerical solution
~in the one-constant approximation! for the director field,
rigidly anchored withb5u on the spherical particle surface
and uniformb50 at infinity. The nucleus of the disclination
ring is put in the boundary condition on the lineu5p/2 in
the formb(r5a2e)5p/2;b(r5a1e)50. The Appendix
contains a brief description of the numerical relaxation
method we used, which is analogous to the artificial com-
pressibility method widely used in fluid dynamics~see, for
instance@9#!. As a next step, we try to find a unique function
of the distancef (r ), which interpolates this exact numerical
solutionb(r ) in all relevant regions:

b~r ,u!5u2
1

2
arctan

sin2u

1/f ~r !1cos2u
. ~11!

This assumption, thatf (r ) is a unique function ofr and
independent of the angleu, appears to be correct within rea-
sonable limits of accuracy; see Fig. 4. Figure 5 shows the
variation f (r ) for several values of the disclination ring size
a; it is clear that the far-field limitf (r )5(r /a)3 @Eq. ~10!#,
adequately describes the director distribution atr!a. In the
two other characteristic regions~the particle surface and the
disclination ring! this function must comply with the condi-
tions

r5R: f ~r !50 ~ i.e., rigid b5u!

r5a: f ~r !51 ~ i.e., disclination atu5p/2! ~12!

Obviously, the conditionf (a)51 is satisfied even for the
simple ansatzf (r )5(r /a)3. However, the particle surface
constraint produces the rapid variation of the real distribution
between the ring and the surface.

FIG. 2. Director distribution in the plane perpendicular to the
disclination line, in the close vicinity of this line,r/a!1. Dashed
lines show the corresponding symmetry axes of a ‘‘normal’’ wedge
(21/2) disclination.

FIG. 3. Free energy of the system as a func-
tion of the disclination ring radius, scaleda/R.
The three curvesF(a) correspond to the choice
of the core cutoff ~a! r c;0.001R; ~b!
r c;0.01R, and~c! r c;0.1R. It is quite clear that
the optimal ring radius depends only weakly~if at
all! on this choice: the minimum energy is
achieved whena* /R'1.25.
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It is possible to analyze the structure of the director field
in the near vicinity of the disclination ring. Taking there
f (r )'11a(r2a) and transforming to the local polar coor-
dinates$r,c% in the cross-section plane~Fig. 2! we examine
the director texture around this singular line. One would ex-
pect, as the distance from the singularity decreases
r/a→0, to recover a ‘‘traditional’’ straight (21/2) distribu-
tion b5const2 1

2c. For this to happen another constraint on
the universal function f (r ) must be imposed, namely,
@d f(r )/dr# r5a52/a. However, the comparison with the full
numerical solution shows that this is not the case, the discli-
nation in our construction is ‘‘distorted’’ with respect to the
straight singular lines@6# ~see Fig. 2!. It is also interesting to
compare this analysis with another known disclination ring:
the Mori and Nakanishi ansatz for the circular (11/2) loop
@10#. There the director field is assumed to follow the lines of
the ellipsoidal coordinate system, which gives in the same
local cross-section plane atr/a!1 the exact straight wedge
disclination expressionbm2n5const1 1

2c. Therefore, we
conclude that the presence of the radial particle in the middle
and the total topological neutrality of the construction~and
not just the fact that the disclination is encircled into a ring!
make the director distribution near this singular line asym-
metric.

By fitting the universal functionf (r ) to the result pro-
vided by the numerical solution, we obtain an interpolated
expression, which satisfies all the above constraints and al-
lows us to work with the ‘‘analytical’’ form ofb(r ), given
by Eq. ~11!:

f ~r !'S raD
3

1A1B
r

a
1Ce2r /a, ~13!

where the coefficients take the form
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Clearly, this function becomes unstable ata→R since the
solution is obtained in the assumption of rigid anchoring,
which prevents placing the disclination near or on the sur-
face. Although such an ultimate type of anchoring (W→`)
is impossible in practice, it is still instructive to find the
equilibrium ring radius under this assumption. Armed with
the full numerical solution, as well as the interpolated ana-
lytical expression forf (r ), one can easily integrate the Frank
free energy to obtain its dependence on the disclination size
a. The result is plotted in Fig. 3. In this integration one faces
the problem of the disclination core, which must be intro-
duced in order to eliminate the relevant singularity~both for
computational and physical reasons!. The three curves
F(a) in Fig. 3 are obtained by choosing very different levels
of the cutoff. The sharp increase of the free energy near the
particle surface is determined by the rigid surface anchoring.

The rise of the free energy at increasinga/R is due to the
trivial increase of the disclination length 2pa since the en-
ergy of a loop is;Ka(ln@a/rc#1p). Let us note that there is
virtually no dependence on the disclination core radiusr c
due to its appearance only under the logarithm. The discli-
nation core~whether melted or biaxial, its energy density is
always determined by the conditionEcr c

25K) is an indepen-
dent physical parameter in this problem and cannot, as all
other lengths, be scaled with the particle radius. Its effect can
only be seen in the situation when the disclination is lying
within the distance;r c from the surface; melting the nem-
atic in this region will rectify the unphysical divergence in
Fig. 3 at a/R51, but does not change the value for the
equilibrium ring radiusa*'1.25R.

IV. DISCUSSION

We have examined the two limiting cases of the problem:
the weak anchoring situation when the director deviations
are small in the whole system and the exact analytical solu-
tion is possible and the rigid anchoring case characterized by
the disclination ring. In both situations the far-field behavior
of the director is identical and is described by the cubic-
power decay of deformations. It is remarkable that even for
the rigid anchoring case the regime whenf (r )5(r /a)3 with
all possible accuracy extends practically to the region of the
ring itself. For all practical purposes this approximation, ex-
pressed by Eq.~10!, should be quite adequate.

An interesting question is to find out at what values of
anchoring energyW does the crossover between the two
above regimes take place. An explicit solution of this prob-
lem is very difficult because one would need to balance sur-
face and bulk energies in the nonlinear regime, when the
disclination is lying on the particle surface. Effects of the
core size will have to be taken into account as well. Such a
solution, however, is not necessary, especially after several
approximations were made in Sec. III~no matter how good
they are from our point of view!, including the one-constant
Frank elasticity limit and the neglect of surfacelike terms~3!.
Therefore we content ourselves with the qualitative estimate
with this crossover valueW* . The simplest way to obtain it
is by matching the two regimes of director variation

b5
WR

4K SRr D
3

sin2u, b5S ar D
3

sin2u. ~14!

This provides the estimateW*;4Ka3/R4. If we recall that
the equilibrium ring size isa;1.25R, this estimate becomes
the expected (W*R/4K);2, i.e., the border of applicability
of the linearized solution.

It is possible, therefore, to observe the disclination ring as
long as sufficiently big particles are used. One would suggest
the use of a moderate-length main chain polymer liquid crys-
tal, densely grafted on the particle surface to ensure strong
radial anchoring. Then, by quenching the texture and fractur-
ing or polishing the material off, one can reveal the region
near the particle surface, where the disclination ring should
be present in the equatorial plane, as Fig. 1 suggests. It is
also important to calculate the total energy of deformations,
created by the particle. This energy has been used, for in-
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stance, as a coupling term in the analysis of the phase equi-
librium of nematic colloids@3#. Our model gives

Fc'H 0.2~W2R3/K !, weak anchoring

6.7~Ka6/R5!→13KR, rigid anchoring.
~15!

Comparing this result with the assumption made in@3#,
that the nematic-colloid coupling energy is;KR→kQ2

with Q the nematic order parameter, one concludes that it
corresponds to the case of rigid anchoring and is about an
order of magnitude larger. However, at weaker anchoring~or
for small colloid particles! the first of Eqs.~16! will be valid.
This coupling energy has a very different dependence on
Q: because the leading term of the anchoring energy is linear
W;Q ~within the mean-field theory framework!, the asymp-
totic behavior of Fc at Q!1 is constant:
W2/K; const1aQ1••• . Therefore, one may explore both
the rigid and the effective weak anchoring regimes on de-
creasing the nematic order parameterQ, since the control
parameterWR/K;Q21 and increases withQ→0. Changing
the size of the particles is another simple tool to study both
characteristic regimes of a liquid-crystalline colloid suspen-
sion.
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APPENDIX: NUMERICAL SOLUTION
AND INTERPOLATION FUNCTION

Numerical solution for the director distribution around the
spherical particle with rigid radial anchoring on its surface
reduces, after taking into account the symmetry of the prob-

lem, to the differential equation for polar angleb(r ) @Eq.
~5!#,

¹2b2
sin2b

2r 2sin2u
50, ~A1!

in spherical coordinates$r ,u,f% with the origin in the par-
ticle center. For this type of problem it is favorable to use the
spherical coordinates with an inverse scaled radiusj5R/r ,
so that the grid in$j,u,f% is more condensed near the par-
ticle surface, where one expects most of the variation to take
place. At the same time one is capable of treating the infinite
radius, corresponding here to the pointj50. It is sufficient
to consider the problem only in one quadrant of the cross
section by the azimuthal plane, for 0,j,1 and
0,b,p/2. The boundary conditions are imposed atj51,
b5u; at infinity j50, b50; on theẑ axisu50: b50; and
on the equatorial planeu5p/2, b5u for j,R/a and
b50 for j.R/a ~the last constraint fixes the position of the
singularity atr5a, between the two adjacent grid points!.

The relaxation method is analogous to the artificial com-
pressibility method widely used in fluid dynamics. The
method uses the concept of an artificial temporal relaxation
of the system with a chosen damping coefficientc:

¹2b2
sin2b

2r 2sin2u
52c2

]b

]t
. ~A2!

The starting point~at t50) can be any director distribution,
but it is advantageous to choose a plausible one, such as the
ansatz~1!, to speed up the computation. The distribution on
every next time step of iteration is calculated according to
Eq. ~A2!. Due to the damping introduced in this equation, the
distribution will relax to a final steady state with no time
dependence. This state, by definition, is the solution of the
original equation~A1!. In order to make this relaxation faster
one should choose the coefficientc as large as possible,
without causing instabilities of the numerical process. In this
particular case, whenc is the only independent parameter in

FIG. 4. Set of graphs forf (r ) for a/R52.2
and different values of the polar angleu, which
varies fromu5p/2 ~i.e., crossing the disclination
line!, solid line, tou→0 ~i.e., along theẑ axis!.
This set indicates the degree of universality of the
function f (r ) in Eq. ~11!, which apparently is
very good.
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~A2!, it is possible to scale the time step with it, effectively
taking the valuec51. The convergence appears to be robust
and the steady-state solutionb(r ,u) is quite independent of
the starting director distribution.

After the exact distributionb(r ) is obtained, the next step
is to check the validity of assumption~11! about the univer-
sal ~for all values of the polar angleu) function of the dis-
tancef (r ). Inverting that equation, we obtain the definition

f ~r !5
tan2~u2b!

sin2u2cos2utan2~u2b!
. ~A3!

We then plot the variation off (r ) for the whole range of
anglesu, varying from 0 top/2 ~Fig. 4!. Clearly, there is
some nonuniversality inf (r ), but it is not very big and the
error in using, as an approximation, the average function~the
solid line in Fig. 4! appears to be insignificant.

Figure 5 presents a set of these ‘‘approximately univer-
sal’’ average functionsf (r ) for several values of the discli-
nation ring radiusa/R. The plots are presented in the double-
logarithmic scale and the far-field behaviorf (r )→(r /a)3 is
apparent. Note that, as it should be, the functionsf (r ) pass
through the pointsf51 on the disclination ringr5a, and

f50 on the particle surfacer /R51. When the asymptotic
far-field dependence off (r ) is taken out, the difficult part is
to approximate the sharp variation in the vicinity of the par-
ticle, in the regionR,r,a. We use for fitting the general
structure forf (r ), given by Eq.~13!, where the coefficients
A,B, andC are constrained by the ‘‘boundary conditions’’
~12!. This determines two of these coefficients, for instance,
A andB in terms of the one remaining (C), which then is
determined as a function of the parametera/R to provide the
best fit to all curves. There is certainly a lot of freedom on
this last step; definingC(a) and some other expressions can
be used with the same~or even better! degree of fitting ac-
curacy. However, this choice appears to be irrelevant for the
final energy calculation~Fig. 3! and we elected to use one of
the simplest adequate expressions forC(a) @see Eq.~13!#.

What is important in the result of this interpolation, is that
the deviation off (r ) from its far-field cubic asymptotic de-
cays exponentially and is practically irrelevant outside the
disclination ring. This makes the trial functionb(r ), given
by Eq. ~10!, a very good approximation of the director field
around the radially anchored colloid particle suspended in a
uniform nematic liquid crystal.
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