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Phase separation of a binary fluid in the presence of immobile particles:
A lattice Boltzmann approach
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Using a lattice Boltzmann model, the phase separation of a binary fluid in the presence of immobile,
penetrable particles is studied in two dimensions. The particles are preferentially wetted by one of
the fluid components. At early times, the hydrodynamic flow promotes the growth of the fluid
domains. At later times, the domains are pinned to a finite size if there is a sufficiently strong
interaction between the particles and the compatible fluid. The final size of the domains depends on
the specific strength of the particle–fluid interaction and on the particle concentration. These results
indicate that the domain size can be tailored by varying the chemical nature and the number of the
particles. © 2002 American Institute of Physics.@DOI: 10.1063/1.1460863#
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I. INTRODUCTION

Polymeric materials are commonly composed of inco
patible fluids and thus the phase-separation dynamics o
system plays a crucial role in determining their propert
and practical utility.1,2 Without hydrodynamics, the genera
characteristics of the phase ordering process for binary m
tures are well understood.3–5 The growth of the domain size
R(t) with time t can be characterized by a single scali
relationship, the well-known Lifshitz–Slyozov lawR(t)
;t1/3, which is indicative of purely diffusive transport.6

When hydrodynamic effects are important, the situation
comes more complex. NowR(t);ta, where the value ofa
depends on the nature of the hydrodynamic regime7,8 and on
the dimensionality~i.e., 2D versus 3D! of the system. How-
ever, both theoretical scaling arguments9,10 and computer
simulations11,12 indicate that hydrodynamic flow, driven b
interfacial tension, leads to a value ofa that is.1/3.13

The introduction of particles or ‘‘fillers’’ into a fluid mix-
ture complicates the phase-separation dynamics even fur
Even the presence ofimmobile particles in thin films of
phase-separating fluids has experimentally been show
yield novel kinetic and structural properties.14,15 It is impor-
tant to understand the behavior of these complex mixtu
since the particles can provide a useful means of control
the morphology of the system and thus, tailoring the prop
ties of the composite. The hydrodynamic behavior of a
nary, phase-separating mixture containing stationary, p
etrable particles has recently been investigated in
dimensions.13 In the latter paper, the authors explicitly solv
a modified Navier–Stokes equation for the binary fluid/s
particle system. Their findings indicate that in the late sta
of the coarsening process, particles that are preferent
favored by one of the fluids can cause the domains to
pinned at a finite size.

In this paper, we characterize a binary fluid/particle m
ture through a similar free energy functional as in Ref.
6300021-9606/2002/116(14)/6305/6/$19.00
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but now house this expression in a lattice Boltzmann
proach. Using this approach, we recover the previous pre
tions for the effect of stationary particles on the characteri
domain size and thus demonstrate that the lattice Boltzm
model provides an effective method for investigating the h
drodynamic behavior of a binary fluid in the presence
immobile particles. We then use the model to vary t
strength of the interaction between the particles and favo
fluid component, and show that the domain size can be
lored by altering the chemical nature of the particles.

II. THE MODEL

The system consists of a 50:50A/B binary mixture and
immobile impurity sites, or particles. The fluid is characte
ized by the order parameterf(r ,t)5rA(r ,t)2rB(r ,t),
which is the difference in the local number density ofA and
B. The particles in the system are ‘‘soft’’ or penetrable sin
we neglect excluded volume interactions between the p
ticles and the fluids. This can be a valid approximation
small ~i.e., nanoscale! particles. The thermodynamic beha
ior of the system is described by the following free ener
functional:

F@f#5FG.L.@f#1(
i 51

N

Ui@f#, ~1!

whereFG.L. is the usual Ginzburg–Landau free energy,

FG.L.@f#5E dr S 2
t

2
f21

u

4
f41

k

2
u“fu2D ~2!

and u.0 andk.0 are phenomenological parameters. T
term k/2u“fu2 represents the free energy cost of formi
fluid–fluid interfaces. Fort,0, FG.L. describes a single ho
mogeneous phase, while fort.0, it yields two-phase coex
istence. Neglecting fluctuations, one findsfeq5(t/u)1/2 with
feq corresponding to the equilibrium order parameter for
5 © 2002 American Institute of Physics
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A-rich phase, and2feq corresponding to the order param
eter for theB-rich phase. In the studies described here,
choosefeq51. The termUi@f# is a potential that describe
the coupling interaction between thei th impurity center lo-
cated atsi and the surrounding fluid,

Ui@f#5E drV0e2~ ur2si u/r 0!~f~r !2f~si !!2. ~3!

The summation in Eq.~1! is over the total number of par
ticles, N. The constantV0.0 characterizes the strength
the coupling interaction andr 0 represents its range, which
chosen to be much less than the domain size and compa
to the thickness of the interface. The parameterr 0 effectively
sets the size of the penetrable particle. The particles fa
one component of the mixture and thus, act as osmotic fo
centers. By settingf(si)5feq51 for all i P(1,...,N), we
model the fact that the particles favor theA-phase. Small,
long-wavelength deviations of the order parameter from
equilibrium value may be described by the equations of
earized hydrodynamics.16–18In the overdamped limit~where
the fluid velocity is slow!, the equations reduce to th
following:17,18

]

]t
f~r ,t !1“•~v~r ,t !f~r ,t !!5M¹2

dF

df~r ,t !
, ~4!

052“p1h¹2v~r ,t !1
dF

df
“f~r ,t !, ~5!

whereM is a mobility coefficient andh is the shear viscosity
The parameterp is a Lagrange multiplier that guarantees t
incompressibility condition,“•v50. These equations can b
rewritten in nondimensional units by choosing the scale
length to bej5(k/t)1/2, which is proportional to the thick-
ness of the interface, the scale of time astD5j2/tM , which
represents the diffusion time across the interface, andfeq. as
the order parameter scale.13 In the rescaled variables, the tw
coupled equations can be written as

]

]t
f~r ,t !52“•~v~r ,t !f~r ,t !!1¹2

dF

df~r ,t !
, ~6!

052“P1¹2v~r ,t !1C
dF

df
“f~r ,t !, ~7!

where the parameterC5(feq.
2 k)/(hMt) is the capillary

number, which measures the significance of the hydro
namic effects.

III. LATTICE BOLTZMANN ALGORITHM

Equations~6! and ~7! are solved numerically through
lattice Boltzmann algorithm.19–21 There are several advan
tages of using lattice Boltzmann algorithms over more c
ventional computational fluid dynamics techniques. Th
include the simplicity of programming and the capability
incorporating complex microscopic interactions in a straig
forward way. In this work, we exploit these features to d
velop the first lattice Boltzmann algorithm for modeling
binary mixture that contains immobile particles.

The lattice Boltzmann algorithm describes the evolut
of single-particle density distribution functions on the sit
Downloaded 17 Oct 2003 to 136.142.87.141. Redistribution subject to A
e

ble

or
ce

s
-

f

y-

-
e

-
-

of a regular lattice. Here, we work on a two-dimension
square lattice. To model a binary fluid consisting ofA andB
particles of respective densitiesrA andrB , two sets of dis-
tribution functions,f i andgi , are defined on each lattice sit
r . Each f i , gi , is associated with a lattice vectorei5
(61,0), ~0,61!, ~61,61!, ~0,0!. The distribution functions
f i are related to the transport of mass and momentum in
system; thegi are related to the changes in compositi
within the mixture. The distribution functions satisfy the fo
lowing equations:

r5(
i

f i , rua5(
i

f ieia , f5(
i

gi , ~8!

where the total number density isr5rA1rB , the number
density difference isf5rA2rB , and u is the bulk fluid
velocity. Thea subscripts in the above equation repres
Cartesian coordinates. In these calculations, the mass i
equal to one.

The distribution functions at each lattice site are upda
at each time stepDt. The evolution equations for the distr
bution functions obey an extension of a Bhatnagar–Gro
Krook predictor-corrector scheme~see Ref. 22!:

f i~x1eiDt,t1Dt !2 f i~x,t !

5
Dt

2
@Cf i~x,t,$ f i%!1Cf i~x1eiDt,t1Dt,$ f i* %!#, ~9!

gi~x1eiDt,t1Dt !2gi~x,t !

5
Dt

2
@Cgi~x,t,$ f i%!1Cgi~x1eiDt,t1Dt,$gi* %!#, ~10!

where f i* and gi* are first order approximations tof i(x
1eiDt,t1Dt) andgi(x1eiDt,t1Dt), respectively. The op-
eratorsCf i(x,t,$ f i%) andCgi(x,t,$gi%) are defined by the fol-
lowing equations:

Cf i~x,t,$ f i%!52
1

t f
~ f i~x,t !2 f i

eq~x,t,$ f i%!!

1hi~x,t,$ f i%!, ~11!

Cgi~x,t,$gi%!52
1

tg
~gi~x,t !2gi

eq~x,t,$gi%!!. ~12!

The f i
eq and gi

eq are equilibrium distribution functions tha
determine the physics inherent in the simulation, andhi al-
lows us to model the presence of extra forces acting on
system. The equilibrium distribution functions and thehi

term are defined through the following expansions:20,21

f i
eq5A1Buaeia1Cu21Dsuaubeiaeib

1Gabeiaeib ,

gi
eq5L1Kuaeia1Ju21Quaubeiaeib , ~13!

hi5THaeia .

The coefficients in these equations are determined by
conservation of density, momentum and density differenc
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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(
i

f i
eq5r, (

i
f i

eqeia5rua , (
i

gi
eq5f, ~14!

together with

(
i

f i
eqeiaeib5Pab1ruaub , ~15!

(
i

gi
eqeiaeib5Gmf

dab1fuaub , ~16!

and

(
i

hi50, (
i

hieia5Ha , (
i

hieiaeib50. ~17!

The term Ha(r )52f¹aS i 51
N dUi@f#/df represents the

a-component of the force at pointr due to the particles, and
G is proportional to the mobility (M5Gtg). Note the ap-
pearance of the tensorPab5p0dab1k@]af]bf2(f¹2f
1 1

2(“f)2)dab# in Eq. ~15!, where p0 is a bulk pressure
consistent with its thermodynamic definition,21 and of the
chemical potentialmf5dF/df in Eq. ~16!. These param-
eters incorporate the equilibrium properties of the mixtu
into the dynamic equations for the structural evolution of
system.

With the above constraints, expansion of Eqs.~9!–~10!,
up to second order inDt, leads in the continuum limit to
both Eq.~4! and the Navier–Stokes equation, usually writt
in the form,21–23

r] t~v!1r~v¹!v52¹P1hDv1H, ~18!

where viscosity is defined ash5rt f /3 andP is a tensor with
componentsPab . We choose parameters in our simulatio
to ensure that the equations are in the overdumped l
~which is appropriate for most experimental system17!, so
that we can neglect the l.h.s. of Eq.~18!. The r.h.s. of this
equation can be rewritten in the same form as Eq.~5!.24

Thus, using the algorithm described here, we are looking
a solution to the system of Eqs.~4! and ~5!.

IV. RESULTS AND DISCUSSIONS

The lattice Boltzmann simulations described above w
carried out in two dimensions, on a lattice 2563256 sites in
size. The particles were introduced into the system at r
domly chosen sites and remained fixed during the ph
separation of the binary mixture. In the plots shown belo
each data point represents an average over three indepe
runs.~To test for finite size effects, simulations were also r
on 64364 and 1283128 site lattices; calculations on a
three lattices gave essentially identical values for the dom
sizes.! The numerical values of the parameters that appea
the free energy@Eqs. ~2! and ~3!# are t5u50.01, k50.02,
V050.0025, andr 051. Together with a number densityr
51 and a mobilityM51, these values guarantee that the
are in the overdamped limit of the hydrodynamic behav
as described by Eq.~7!, for all values of the capillary numbe
considered in our study.25 Moreover, the forces due to th
particles represent a small, short range perturbation in
system.
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In the absence of particles and hydrodynamics, our
sults are consistent with the Lifshitz–Slyozov growth law f
the domain size, i.e.,R(t);t1/3. This growth law is also
observed for small values of the capillary numberC, up to a
value of approximately 0.25. The hydrodynamic effects b
come apparent for an intermediate range ofC’s, where the
scaling exponent grows continuously from 1/3 to 1/2. T
value of 1/2 for the scaling exponent is reached atC51 and
this value remains stable, at least over the range of tim
considered, for even higher values ofC ~the largest value
considered here wasC550!. The two limiting situations are
shown in Fig. 1 and agree with those obtained in Ref. 13
Fig. 2, 3, and 4, the morphologies of the system are show
different times and strength of the coupling~values ofV0!
between the soft particles and fluid. As was also observe
Ref. 13, the introduction of the soft particles strongly mo
fies the coarsening of the domains and gives rise to a s
ration of their size at late times. We also note that increas
the coupling constantV0 decreases the pinned value of th
domain size, as can be seen by comparing Figs. 3 and 4
will return to this point at the end of this section.

In order to characterize the behavior of the system,
adopt the theoretical model introduced in Ref. 13. At la
times, we can consider the system as being partitioned in
large number of domains of characteristic lengthR. Because
the particles are randomly distributed on the lattice and
forces due to the particles are short ranged, it can be arg
that the values of the particle density in the different doma
approximately obey a Gaussian distribution, centered atn0

5N/L2, whereL is the length of the simulation box, an
having a variancese

252n0 /R2. In this case, the mean valu
of the particle density in the unfavorableB-phase,n2 , can
be expressed by the following scaling relation:13

n2~R!5n0F~R/R0!, ~19!

where R05(2/n0)1/2 and the scaling function isF5erf(x)
2(12exp(2x2))/(p1/2x) ~where erf is the error function!.

FIG. 1. Characteristic domain sizeR vs time t for the pure binary mixture.
Small values of the capillary number do not modify the usual Lifshit
Slyozov Law; for capillary numberC52.5, the growth exponent is modified
by hydrodynamic effects.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Hence, the particle number density in theB-phase should be
determined by the dimensionless numberR/R0 and the total
number density of particles in the system. To verify t
above scaling form, in Fig. 5 we collapse the data obtai
from the simulations by plottingY5n2 /n0 against X
5R/R0 . It is seen that, for different total particle densitie
all the data fit fairly well onto one master curve without a
adjustable parameters.

FIG. 2. Morphology of the binary fluid containingN53200 immobile par-
ticles in the presence of hydrodynamics (C50.25) at early times (t
51000). Dark gray corresponds to theA-phase, light gray corresponds t
the B-phase, and the black points represent the particles.

FIG. 3. Morphology of the binary fluid containingN53200 immobile par-
ticles in the presence of hydrodynamics (C50.25) at late times (t
510 000); the coupling constantV0 is set equal to 0.0025. Dark gray co
responds to theA-phase, light gray corresponds to theB-phase, and the
black points represent the particles.
Downloaded 17 Oct 2003 to 136.142.87.141. Redistribution subject to A
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At the late stage of the evolution, the value of the exc
free energy density of the system in two dimensions can
qualitatively estimated as

DF~R!

L2 }
s

R
1Vcpln2~R!, ~20!

i.e., as the sum of an interfacial free energys/R ~wheres is
related to the mean value of the surface tension! and a mean
energy penaltyVcpl}(2feq)

2V0 for a particle immersed in
the B-phase, times the mean local density of those partic

FIG. 4. Morphology of the binary fluid containingN53200 immobile par-
ticles and in the presence of hydrodynamics (C50.25) at late times (t
510 000): the coupling constantV0 is set equal to 0.005. Dark gray corre
sponds to theA-phase, light gray corresponds to theB-phase, and the black
points represent the particles.

FIG. 5. Immobile particle density in the unfavored phasen2 vs time t for
three different mean densitiesn53200/L2, 2400/L2, 1600/L2, where L
5256. The main picture confirms the scaled form given in Eq.~19!; the
inset shows the relationship between the original variables. The dashed
is a plot of the functionF5erf(x)2(12exp(2x2))/(p1/2x).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Minimizing expression~20! with respect toR, it is possible
to show that in 2D, the excess free energy has a minim
only if the parameters of the system satisfy the followi
condition:13

0,S p

2n0
D 1/2S s

Vcpl
D,1. ~21!

This condition allows us to estimate the maximum ratio b
tween surface tension and coupling constant that give
saturation of the domain lengths. If this condition is not s
isfied, for example if the coupling is too small, the syste
continues to coarsen like a simple binary fluid without p
ticles.

When the condition in Eq.~20! is satisfied, one has th
possibility of tailoring not only the final domain size, bu
also the rate at which this size is reached. In particular, F
6 shows the effect of hydrodynamics on the domain satu
tion dynamics for the fixed value of the coupling consta

FIG. 6. Evolution in time of the characteristic domain size withN53200
immobile particles,V050.0025,k50.02, and different values of the capi
lary numberC.

FIG. 7. Evolution in time of the characteristic domain size for three diff
ent values of the coupling constant:V050.0025, 0.0050, and 0.01. The othe
relevant parameters are fixed atN53200,k50.02, andC52.
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V050.0025. It can be seen that increasing the capillary nu
berC results in a more rapid coarsening of the system to
final domain size; the actual size of the pinned domains
mains the same for the various values ofC. The final domain
size can, however, be altered by varying the coupling c
stant and the concentration of particles.

In Fig. 7, we plotR as a function of time for three dif-
ferent values of the coupling constantV0 for a fixed value of
C and n0 . Using V050.0025 as our reference value, w
increaseV0 by a factor of 2 and a factor of 4. ForV0

50.0050, the final domain size is half the size~20 lattice
units! of the value forV050.0025~40 units!, and for the case
of V050.01, the final domain size is a quarter~10 units! of
the reference value.

The final domain size can also be tailored by chang
the particle concentration; by halving the value of (n0)1/2,
we obtain a twofold increase in the value of final doma
size. On the other hand, Fig. 8 shows that if we change b
n0 andV0 in such a way that the product (n0)1/2V0 remains
constant, we obtain the same value of the saturated dom
size.

V. CONCLUSIONS

In this paper, we developed a lattice Boltzmann alg
rithm to investigate the phase separation process of a bi
fluid in the presence of immobile penetrable particles, wh
are preferentially wetted by one of the fluid components. T
coarsening of the domains was studied in the overdam
hydrodynamic regime. In agreement with previous numeri
and theoretical studies,13 we find that the particles can inhib
the growth of the fluid domains for sufficiently high value
of the coupling constantV0 . The fact that two independen
computational approaches show this behavior provide
convincing argument that stationary particles can have a
nificant effect on the phase-separation dynamics and m
phology of binary fluids. We also note that the pinning of t

-

FIG. 8. Evolution in time of the characteristic domain size for differe
values of the coupling constant and particle concentration with the pro
n0

1/2
•V0 being held constant. Curve 1 corresponds to the reference va

V050.0025,n050.05,k50.02, andC52. The values of the coupling con
stant and particle concentration aren0/4 and 2V0 for curve 2, and 4n0 and
V0/2 for curve 3.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6310 J. Chem. Phys., Vol. 116, No. 14, 8 April 2002 Suppa et al.
domains is in agreement with experimental studies on ph
separation in thin films containing immobile particles th
are preferentially wetted by one of the binary fluids.14,15

Using the lattice Boltzmann algorithm, we showed th
the actual size of the domains can be tailored by varying
strength of the coupling interaction between the particles
the compatible fluid. In physical terms, this effect could
achieved by altering the coating on filler particles or by us
chemically different species~e.g., gold versus tin or silve
particles! to attain the desired domain size. In addition, w
showed that altering the particle concentration provides
alternative means of regulating the final domain size.

The method introduced here provides a computation
efficient means of investigating the effect of stationary fil
particles on the structural evolution of multicomponent fl
ids. It has recently been suggested26 that interesting phenom
ena may arise if bothA-compatible andB-compatible par-
ticles were added to a binary, phase-separatingA/B mixture.
The lattice Boltzmann model described here could be use
provide insight into the phase-ordering in this and other co
plex fluid/particle systems.
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