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Using a lattice Boltzmann model, the phase separation of a binary fluid in the presence of immobile,
penetrable particles is studied in two dimensions. The particles are preferentially wetted by one of
the fluid components. At early times, the hydrodynamic flow promotes the growth of the fluid
domains. At later times, the domains are pinned to a finite size if there is a sufficiently strong
interaction between the particles and the compatible fluid. The final size of the domains depends on
the specific strength of the particle—fluid interaction and on the particle concentration. These results
indicate that the domain size can be tailored by varying the chemical nature and the number of the
particles. ©2002 American Institute of Physic§DOI: 10.1063/1.1460863

I. INTRODUCTION but now house this expression in a lattice Boltzmann ap-
_ i _ proach. Using this approach, we recover the previous predic-

_Polymeric materials are commonly composed of inCoM+jqns for the effect of stationary particles on the characteristic

patible fluids and thus the phase-separation dynamics of thg,main size and thus demonstrate that the lattice Boltzmann
system plays a crucial role in determining their propertiesyoqe| provides an effective method for investigating the hy-
and practical utility>? Without hydrodynamics, the general drodynamic behavior of a binary fluid in the presence of
characteristics of the phasée ordering process for binary mixe 1 opile particles. We then use the model to vary the
tures are well understodtd” The growth of the domain size  grength of the interaction between the particles and favored
R(t) with time t can be characterized by a single scalinggy,ig component, and show that the domain size can be tai-

relit/téonshi_p, the well-known Lifshitz—Slyozov 1awR(t)  |greq by altering the chemical nature of the particles.
~tY3 which is indicative of purely diffusive transpdtt.

When hydrodynamic effects are important, the situation be-

comes more complex. Now(t)~t*, where the value ofr  Il. THE MODEL
depends on the nature of the hydrodynamic redfhead on
the dimensionality(i.e., 2D versus 3Dof the system. How-
ever, both theoretical scaling argumérfsand computer
simulation$''? indicate that hydrodynamic flow, driven by

>1/3: . . .
interfacial tension, leads to a value afthat is >1/3 B. The particles in the system are “soft” or penetrable since

The introduction of particles or “fillers” into a fluid mix- . .
. . . we neglect excluded volume interactions between the par-
ture complicates the phase-separation dynamics even further, . . : L
. . . . - icles and the fluids. This can be a valid approximation for
Even the presence dmmobile particles in thin films of

. . . small (i.e., nanoscaleparticles. The thermodynamic behav-
phase-separating fluids has experimentally been shown t|8r of the system is described by the following free ener
yield novel kinetic and structural properti€s® It is impor- y y 9 9y

. . functional:
tant to understand the behavior of these complex mlxturesu ctiona

since the particles can provide a useful means of controlling N

the morphology of the system and thus, tailoring the proper- F[#]= FG.L.[¢]+iZl Uil ¢], (€]

ties of the composite. The hydrodynamic behavior of a bi- -

nary, phase-separating mixture containing stationary, perwhereFg, is the usual Ginzburg—Landau free energy,

etrable particles has recently been investigated in two r u K

dimensiong? In the latter paper, the authors explicitly solve Fellol= f dr( 5 P>+ — P+ §|V¢>|2 2

a modified Navier—Stokes equation for the binary fluid/soft 4

particle system. Their findings indicate that in the late stagandu>0 andk>0 are phenomenological parameters. The

of the coarsening process, particles that are preferentiallierm k/2|V ¢|? represents the free energy cost of forming

favored by one of the fluids can cause the domains to b#uid—fluid interfaces. For<O0, Fg, describes a single ho-

pinned at a finite size. mogeneous phase, while fer-0, it yields two-phase coex-
In this paper, we characterize a binary fluid/particle mix-istence. Neglecting fluctuations, one fin{ii&;(r/u)l’2 with

ture through a similar free energy functional as in Ref. 13,¢,, corresponding to the equilibrium order parameter for the

The system consists of a 50:30B binary mixture and
immobile impurity sites, or particles. The fluid is character-
ized by the order parametep(r,t)=pa(r,t)—pg(r,t),
which is the difference in the local number densityfoand
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A-rich phase, and- ¢, corresponding to the order param- of a regular lattice. Here, we work on a two-dimensional,
eter for theB-rich phase. In the studies described here, wesquare lattice. To model a binary fluid consistingfoand B
choosed.=1. The termU;[ ¢] is a potential that describes particles of respective densitigg and pg, two sets of dis-
the coupling interaction between thh impurity center lo-  tribution functions,f; andg;, are defined on each lattice site

cated ats and the surrounding fluid, r. Each f;, g;, is associated with a lattice vecte=
(%£1,0), (0,£1), (£1,£1), (0,0. The distribution functions
Ui[¢]=f drVee =8l g(r)— ¢(s))2. (3)  f; are related to the transport of mass and momentum in the

system; theg; are related to the changes in composition
The summation in Eq(l) is over the total number of par- within the mixture. The distribution functions satisfy the fol-
ticles, N. The constan¥,>0 characterizes the strength of lowing equations:
the coupling interaction and, represents its range, which is
chosen to be much less than the domain size and comparable  _ , _ A _ ,
to the thickness of the interface. The paramegesffectively P Eu fio e 2 fita, ¢ 2. 9 ®
sets the size of the penetrable particle. The particles favor

one component of the mixture and thus, act as osmotic forc¥ere the total numbe_r density js=pa+ ps, the number
centers. By settingp(s)= deg=1 for all i e (1,...N), we density difference isp=ppr—pg, andu is the bulk fluid

model the fact that the particles favor thephase. Small, velocity. The « subscripts in the above equation represent
long-wavelength deviations of the order parameter from jiCartesian coordinates. In these calculations, the mass is set

equilibrium value may be described by the equations of lin-£dual to one.

earized hydrodynamic€-28In the overdamped limitwhere The distribution functions at each lattice site are updated
the fluid velocity is slow, the equations reduce to the at each time stept. The evolution equations for the distri-

following:17:18 bution functions obey an extension of a Bhatnagar—Gross—
' Krook predictor-corrector schemisee Ref. 2p
d oF
E¢(r,t)+V-(V(r,t)¢(r,t))=Mvzm, (4 fi(x+eAt,t+At)—fi(x,t)
SF At .
0=—=Vp+7Va(r,t)+ —V¢(r,t), (5) = 5 [Caxt{fi) +Cri(x+ ALt AL{TT )], ©)

o

whereM is a mobility coefficient and; is the shear viscosity. g;(x+egAt,t+At)—g;(x,t)

The parametep is a Lagrange multiplier that guarantees the ;

incompressibility conditiony - v=0. These equations can be = — [Cai(xt{fi}) +Cy(x+eAtt+At{gFD)], (10
rewritten in nondimensional units by choosing the scale of 2

length to be¢=(k/7)¥? which is proportional to the thick-
ness of the interface, the scale of timetgs: £€2/7M, which
represents the diffusion time across the interface, gndas
the order parameter scaféln the rescaled variables, the two
coupled equations can be written as

where f* and g} are first order approximations té(x
+eAt,t+At) andg;(x+¢eAt,t+At), respectively. The op-
eratorsCr;(x,t,{f;}) andCgi(x,t,{gi}) are defined by the fol-
lowing equations:

J F 1 e
_ - _vVv. 2 Cii(x,t{f:H=——(f.(x,t) = fr{x,t,{f;
S OTD= =V (0 0)+ V5, 6) (ot {fih == —(fixt) Fxt{fih)
SE +hi(X,t,{fi}), (11)
0=—VP+V2v(r,t)+C£V¢(r,t), (7)
1
- . —_n® i
where the paramete€=(¢§q.k)/(7;M 7) is the capillary Coixtigi) = Tg(g'(x’t) g xtgih). (12)
number, which measures the significance of the hydrody- o o )
namic effects. The 79 and g are equilibrium distribution functions that
determine the physics inherent in the simulation, apal-
IIl. LATTICE BOLTZMANN ALGORITHM lows us to model the presence of extra forces acting on the

] ) system. The equilibrium distribution functions and the
Equations(6) and (7) are solved numerically through a term are defined through the following expansiéhé:
lattice Boltzmann algorithm®=2! There are several advan-

tages of using lattice Boltzmann algorithms over more con-  f*%=A+Bu,e,+Cu’+ DsU,Ug€i.Eip
ventional computational fluid dynamics techniques. These
include the simplicity of programming and the capability of
incorporating complex microscopic interactions in a straight- eq_ 2
forward way. In this work, we exploit these features to de- T L KU U QUaUger i, (13
velop the first lattice Boltzmann algorithm for modeling a h=TH,e.,.
binary mixture that contains immobile particles.

The lattice Boltzmann algorithm describes the evolutionThe coefficients in these equations are determined by the
of single-particle density distribution functions on the sitesconservation of density, momentum and density difference,

+Gaﬁeiaeiﬂ,
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10 T .

2 ffp, X ffempu., 2 o4, (19
together with

Z fieoeiaeiﬁz Paﬁ+puauﬁr (15) -

|

R

Ei gscbiaeiﬁ:l—‘,u¢5a,8+¢uauﬁ! (16)
and

Z hi=0, Z hie,=H,, Z hie;.&i3=0. (17)
The term H,(r)=—¢V, 3N ,6Ui[¢]/8¢ represents the Yo 10° 10° 10° 10°
a-component of the force at pointdue to the particles, and t

I'is proportlonal to the mOblllty M :rTg)' Note the 2ap- FIG. 1. Characteristic domain sifevs timet for the pure binary mixture.
pearance of the tenSd?aB: p05a5+k[aa¢al3¢_(¢v ¢ Small values of the capillary number do not modify the usual Lifshitz—
+XV$)?) dapl In Ed. (15), wherepg is a bulk pressure  siyozov Law; for capillary numbeE=2.5, the growth exponent is modified
consistent with its thermodynamic definitihand of the by hydrodynamic effects.
chemical potentialu = 6F/Jd¢ in Eq. (16). These param-
eters incorporate the equilibrium properties of the mixture
into the dynamic equations for the structural evolution of the
system.

With the above constraints, expansion of E@—(10),
up to second order ilt, leads in the continuum limit to
both Eq.(4) and the Navier—Stokes equation, usually written

in the form?1~23

In the absence of particles and hydrodynamics, our re-
sults are consistent with the Lifshitz—Slyozov growth law for
the domain size, i.e.R(t)~tY3. This growth law is also
observed for small values of the capillary numzrmup to a
value of approximately 0.25. The hydrodynamic effects be-
come apparent for an intermediate rangeCs, where the
pd(V)+ p(VV)v=—VP+ pAv+H, (18 scaling exponent grows continuously from 1/3 to 1/2. The
value of 1/2 for the scaling exponent is reache€atl and
this value remains stable, at least over the range of times
considered, for even higher values Gf(the largest value
IJ:onsidered here was=50). The two limiting situations are
shown in Fig. 1 and agree with those obtained in Ref. 13. In
Fig. 2, 3, and 4, the morphologies of the system are shown at
different times and strength of the couplitgalues ofV,)
between the soft particles and fluid. As was also observed in
Ref. 13, the introduction of the soft particles strongly modi-
fies the coarsening of the domains and gives rise to a satu-
IV. RESULTS AND DISCUSSIONS ration of t_heir size at late times. We also _note that increasing
the coupling constan¥, decreases the pinned value of the
The lattice Boltzmann simulations described above werglomain size, as can be seen by comparing Figs. 3 and 4. We
carried out in two dimensions, on a lattice 26856 sites in  will return to this point at the end of this section.
size. The particles were introduced into the system at ran- In order to characterize the behavior of the system, we
domly chosen sites and remained fixed during the phasadopt the theoretical model introduced in Ref. 13. At late
separation of the binary mixture. In the plots shown belowtimes, we can consider the system as being partitioned into a
each data point represents an average over three independ&iye number of domains of characteristic lenBttBecause
runs.(To test for finite size effects, simulations were also runthe particles are randomly distributed on the lattice and the
on 64x64 and 12& 128 site lattices; calculations on all forces due to the particles are short ranged, it can be argued
three lattices gave essentially identical values for the domaithat the values of the particle density in the different domains
sizes) The numerical values of the parameters that appear iapproximately obey a Gaussian distribution, centeredyat
the free energyEgs.(2) and(3)] are 7=u=0.01,k=0.02, =N/L?, wherel is the length of the simulation box, and
V=0.0025, andro=1. Together with a number densify  having a variancer>=2n,/R?. In this case, the mean value
=1 and a mobilityM =1, these values guarantee that the weof the particle density in the unfavorabBephasen_, can
are in the overdamped limit of the hydrodynamic behaviorbe expressed by the following scaling relatign:
as described by E@7), for all values of the capillary number
considered in our study. Moreover, the forces due to the n-(R)=noF(R/Ro), (19
particles represent a small, short range perturbation in thehere Ry=(2/n,)*?> and the scaling function i = erf(x)
system. —(1—exp(—x?)/(7'*) (where erf is the error function

where viscosity is defined ag= p 7;/3 andP is a tensor with
components®, ;. We choose parameters in our simulations
to ensure that the equations are in the overdumped lim
(which is appropriate for most experimental syst&mso
that we can neglect the L.h.s. of E{.8). The r.h.s. of this
equation can be rewritten in the same form as B).2*
Thus, using the algorithm described here, we are looking fo
a solution to the system of Eg&l) and (5).
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FIG. 2. Morphology of the binary fluid containing= 3200 immobile par-  FIG. 4. Morphology of the binary fluid containing= 3200 immobile par-

ticles in the presence of hydrodynamic€=0.25) at early times t( ticles and in the presence of hydrodynami€3=(0.25) at late times t(

=1000). Dark gray corresponds to tephase, light gray corresponds to =10 000): the coupling constalt, is set equal to 0.005. Dark gray corre-

the B-phase, and the black points represent the patrticles. sponds to thé\-phase, light gray corresponds to tBehase, and the black
points represent the particles.

lc—ilence,_theczj pt))artlr(]:ledr)umbe_r d|en5|ty in t;qlaqhase sl‘;]ould ble At the late stage of the evolution, the value of the excess
eteLmlnz yt ef |mer_15||0n t_asshnum o and the tota free energy density of the system in two dimensions can be

number density of particles in the system. To verify the , -iiatively estimated as

above scaling form, in Fig. 5 we collapse the data obtained

from the simulations by plottingY=n_/n, against X AF(R) o
=R/Ry. It is seen that, for different total particle densities, Z "R Ve (R), (20)
all the data fit fairly well onto one master curve without any .

adjustable parameters. i.e., as the sum of an interfacial free energhR _(where(r is
related to the mean value of the surface tensam a mean

energy penaltwcp|oc(2¢eq)zvo for a particle immersed in

the B-phase, times the mean local density of those particles.
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FIG. 3. Morphology of the binary fluid containing=3200 immobile par-  FIG. 5. Immobile particle density in the unfavored phasevs timet for

ticles in the presence of hydrodynamic€=0.25) at late times t(  three different mean densities=3200L2, 2400L2 1600L?, where L
=10000); the coupling constait, is set equal to 0.0025. Dark gray cor- =256. The main picture confirms the scaled form given in 8¢); the
responds to theéA-phase, light gray corresponds to tBephase, and the inset shows the relationship between the original variables. The dashed line
black points represent the particles. is a plot of the functiorF = erf(x)— (1—exp(—x®))/(73).
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FIG. 6. Evolution in time of the characteristic domain size whtk- 3200 FIG. 8. Evolution in time of the characteristic domain size for different

immobile particlesV,=0.0025,k=0.02, and different values of the capil- values of the coupling constant and particle concentration with the product

lary numberC. n¥2.V, being held constant. Curve 1 corresponds to the reference values
V(,=0.0025,n,=0.05,k=0.02, andC=2. The values of the coupling con-
stant and particle concentration arg/4 and 2/, for curve 2, and 4, and

Minimizing expression20) with respect toR, it is possible Vo2 for curve 3.

to show that in 2D, the excess free energy has a minimum
only if the parameters of the system satisfy the followingy —0.0025. It can be seen that increasing the capillary num-

e 13
condition: ber C results in a more rapid coarsening of the system to the
T\ 12 final domain size; the actual size of the pinned domains re-
0<(ﬁ) V—I) <l (21)  mains the same for the various values®ofThe final domain
0 cpl

size can, however, be altered by varying the coupling con-
This condition allows us to estimate the maximum ratio bestant and the concentration of particles.

tween surface tension and coupling constant that gives a |n Fig. 7, we plotR as a function of time for three dif-
saturation of the domain lengths. If this condition is not satferent values of the coupling constan for a fixed value of
isfied, for example if the coupling is too small, the systemC and n,. Using V,=0.0025 as our reference value, we
continues to coarsen like a simple binary fluid without par-increaseV, by a factor of 2 and a factor of 4. Fov,
ticles. =0.0050, the final domain size is half the si20 lattice
When the condition in Eq(20) is satisfied, one has the units) of the value fotV,=0.0025(40 unit9, and for the case
possibility of tailoring not only the final domain size, but of V,=0.01, the final domain size is a quart@0 unit9 of
also the rate at which this size is reached. In particular, Figthe reference value.
6 shows the effect of hydrodynamics on the domain satura-  The final domain size can also be tailored by changing
tion dynamics for the fixed value of the coupling constantthe particle concentration; by halving the value of)?,
we obtain a twofold increase in the value of final domain
size. On the other hand, Fig. 8 shows that if we change both
no andV, in such a way that the produchg)*?V, remains
constant, we obtain the same value of the saturated domain
size.

100 "

<<
°

=)
v

V. CONCLUSIONS

In this paper, we developed a lattice Boltzmann algo-
rithm to investigate the phase separation process of a binary
fluid in the presence of immobile penetrable particles, which
are preferentially wetted by one of the fluid components. The
coarsening of the domains was studied in the overdamped
hydrodynamic regime. In agreement with previous numerical
and theoretical studiésS,we find that the particles can inhibit
the growth of the fluid domains for sufficiently high values
of the coupling constanity. The fact that two independent
t computational approaches show this behavior provides a

FIG. 7. Evolution in time of the characteristic domain size for three differ- convincing argument that stationary partldes can have a SIg-

ent values of the coupling constat;=0.0025, 0.0050, and 0.01. The other Nificant eﬁe‘_:t on th_e phase-separation dynam_ics_ and mor-
relevant parameters are fixeddt 3200,k=0.02, andC=2. phology of binary fluids. We also note that the pinning of the
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